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ABSTRACT 

A comprehensive network design planning framework is critical to the capacity, efficiency and 
reliability of a global supply chain system. Most studies on logistics network planning are 
based on simple and deterministic assumptions of day-to-day supply chain operations. 
However, the performance of a network logistic system is in fact largely affected by 
uncertainties in demand rate and transportation lead times. This study proposes a mathematical 
model for the design of a two-echelon supply chain where a set of suppliers serve a set of 
terminal facilities that receive uncertain customer demands. This model integrates a number of 
system decisions in both the planning and operational stages, including facility location, multi-
level service assignments, multi-modal transportation configuration, and inventory 
management, to minimize the expected system cost under uncertainties from both suppliers 
and demands. We also consider probabilistic supplier disruptions that may halt product supply 
from certain suppliers from time to time. We developed a customized solution approach based 
on Lagrangian relaxation that can solve these models efficiently and accurately. Numerical 
examples are conducted to test the proposed model and draw managerial insights into how the 
key parameters affect the optimal system design. Finally, a user friendly web-based interface 
is developed for biofuel supply chain network design with graphic interactions. 
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INTRODUCTION 

A significant portion of Logistics investment and operations cost are attributed to 
suboptimal logistics network planning and unreliable day-to-day operations. In the planning 
stage, excessive installations and unbalanced spatial distribution of service facilities obviously 
incur a waste of investment and resources, while underinvestment in facility infrastructures 
will hinder following transportation operations and inventory management throughout the 
operational horizon. In day-to-day operations, a series of interdependent decisions on several 
operational components, including inventory level, shipment amount and delivery mode, will 
be dynamically made at each terminal facility so as to satisfy stochastic customer demand in 
time. Supply chain operations are susceptible to various uncertainties such as facility 
disruptions, transportation delays, and customer demand fluctuations.  

For decades, numerous efforts have been made to address planning-level logistics 
network design. Early studies stem from facility location problems, which can be traced back 
to about a century ago (Weber, 1957). Traditional location models, e.g., the p-median and 
uncapacited facility location models, simply assume that the long-term operational costs can 
be captured by one-period transportation operations from service facilities to customer 
locations. See Daskin (1995) and Drezner (2002) for a review on these developments. As the 
global competition increased in the late 1970s, researchers tried to use location models to 
address strategical planning issues in logistics systems where complex transportation and 
inventory management operations are involved (M. Melo, Nickel, & Saldanha-Da-Gama, 
2009). Facility location models were adapted to incorporate shipment costs for multi-period 
dynamic operations (M. T. Melo, Nickel, & Da Gama, 2006) and multi-commodity flows 
(Klose & Drexl, 2005). These models are also extended to multi-layer (or multi-echelon) 
supply chain distribution system design (Şahin & Süral, 2007).  

In addition to all the studies on facility location problems, on the operational side, 
freight lead time uncertainties and customer demand fluctuations have been well recognized 
as major challenges to inventory management and customer service quality. Recently, a 
number of studies investigated how operational disruptions impact inventory management 
(Berk & Arreola Risa, 1994; Chopra, Reinhardt, & Mohan, 2007; Dada & Petruzzi, 2007; 
Gupta, 1996; Parlar & Berkin, 1991; Parlar & Perry, 1995; Parlar, 1997; L Qi, Shen, & Snyder, 
2009; Ross, Rong, & Snyder, 2008; Sheffi, 2001; Tomlin, 2006). Most of these studies are 
however limited to relatively simple supply chain structures (e.g., a single facility or a series 
supply chain) and therefore cannot provide a network perspective for large-scale logistics 
systems planning. However, for a realistic supply chain system that faces both facility 
disruptions and operational uncertainties simultaneously, it is imperative to have a system 
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design method that is not only robust against facility disruption risks but immune to operational 
uncertainties. Uncertainties from both customer demand generation and supply service 
reliability have been recognized and investigated (Cui, Ouyang, & Shen, 2010; Daskin, 1983; 
Li & Ouyang, 2010; Snyder & Daskin, 2005) 

As evidenced in recent catastrophic events (e.g., West Coast Lockdown (Gibson, 
Defee, & Ishfaq, 2015), Szechuan Earthquake (Chan, 2008), Fukushima nuclear leak (Holt, 
Campbell, & Nikitin, 2012), Hurricane Sandy (Blake, Kimberlain, Berg, Cangialosi, & Beven 
II, 2013)), supply chain facilities are vulnerable to various natural and anthropogenic 
disruption risks such as floods, earthquakes, power outages, and labor actions. Recently, there 
have been many studies on reliable facility location design with the aim of increasing the 
expected performance of a supply chain system across various facility disruption scenarios. To 
ensure customer service levels after a disruption happens, one way is to hold a high inventory 
of commodities at the downstream terminals (or retailer stores), which however incurs 
excessive inventory holding cost. Or expedited transportation can be used to largely reduce the 
delivery time to avoid accumulation of unmet demand, which however may dramatically 
increase transportation cost due to expensive expedited services. When expedited 
transportation is available, the needed safety inventory can be significantly reduced. Although 
an expedited shipment usually costs way more than the regular service, it can much improve 
the service quality even if only used in emergent occasions (e.g., when the safety inventory is 
about to deplete).This series of uncertainties throughout these interdependent planning and 
operational stages, if not properly managed, may seriously damage system performance and 
deteriorate customer satisfaction. 

In reality, however, uncertainties exist almost ubiquitously throughout all components 
in a supply chain. Studies in 1980s (Batta, Dolan, & Krishnamurthy, 1989; Daskin, 1982, 1983; 
ReVelle & Hogan, 1989) pointed out the need for facility redundancy under stochastic demand. 
Later studies (Lee, Padmanabhan, & Whang, 1997; Ouyang & Daganzo, 2006; Ouyang & Li, 
2010) further recognized that demand uncertainties cause serious challenges to inventory 
management when transportation takes long and uncertain lead times. To address this problem, 
facility location design has been integrated into inventory management to balance the tradeoff 
between spatial inventory distribution and transportation (Chen, Li, & Ouyang, 2011; Daskin, 
Coullard, & Shen, 2002; Lian Qi, Shen, & Snyder, 2010; Shen, Coullard, & Daskin, 2003; 
Shen & Qi, 2007; Shu, Teo, & Shen, 2005; Snyder, Daskin, & Teo, 2007). Many developments 
simply treated operational components as separable linear terms (Carlsson & Rönnqvist, 2005; 
Cordeau, Pasin, & Solomon, 2006; Eskigun, Uzsoy, Preckel, & Beaujon, 2005; Sadjady & 
Davoudpour, 2012; Wilhelm, Liang, Rao, Warrier, & Zhu, 2005), which however fail to 
capture the interdependence among inventory management and transportation mode choices 
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in an uncertain environment. However, none of these studies consider expedited shipment 
options and unexpected facility disruptions and thus they are not suitable for incorporating 
transportation mode configuration decisions in system network planning. This study will 
bridge these gaps by proposing an integrated logistics planning framework that combines 
supply selection, transportation mode configurations, and plant inventory management 
decisions all together. 
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OBJECTIVE 

This study proposes an integrated logistics network design framework that incorporates 
inventory management, expediting transportation options and facility disruption risks. We will 
particularly focus on a supply chain system (e.g., a distributed manufacture system) where a 
set of terminal facilities (e.g., plants) order products (or parts) from a set of external suppliers. 
This system will be responsible to the initial fixed investment to select suppliers and setup the 
service relationships in the planning stage, and inventory holding costs at the terminal facilities 
and both regular and expedited transportation costs from suppliers to facilities in the 
operational stage. Note that the effect of facility disruptions and that from demand and 
transportation uncertainties are highly coupled. For example, disruptions of facilities will 
reduce candidate suppliers to customer terminals, which may in consequence increase 
transportation uncertainties and cumulate more unmet demand. Mathematical models will be 
created to determine the optimal supplier location selection, supplier to plant assignment, 
expedited shipment configuration, and inventory stock level at each plant that collectively 
minimize the total expected system cost over the entire planning horizon. These models are 
non-linear integer programming problems and solving them is very challenging and substantial 
modeling efforts are needed to develop a comprehensive yet computationally-tractable model 
to solve this problem. We propose a customized solution approach based on Lagrangian 
relaxation that decompose the problem into a set of relatively easy sub-problems. We conduct 
a set of case studies to show that the proposed approach can efficiently solve problem instances 
of different scales. We draw from case study results several managerial insights on the 
interdependence among planning decisions, transportation configurations and inventory 
management strategies, and we also discuss the effects of key parameters on the optimal system 
design results.  
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SCOPE 

This study is presenting an integrated methodological framework that takes advantage 
of optional expedited transportation services and addresses decision components in both 
planning and operational stages simultaneously. This framework bridges the gap between 
planning models of network logistics systems and operational models of multimodal 
transportation configuration and inventory management decisions considering the facility 
disruption risks. It enables logistics planners to ponder all these involved critical decisions in 
an integrated manner and design a system that performs more reliably and runs at a lower cost 
compared to traditional results. As demonstrated in the numerical examples, our proposed 
model framework can efficiently and accurately solve an integrated logistics system design 
problem, and the optimal design solution can balance all cost components (including initial 
investment, regular and expedited transportation cost, and inventory management cost) and 
thus yields a minimum expected net cost. In addition, we showed interesting managerial 
insights into the optimal system design, such as relative importance and savings from 
integrating the expedited shipment option under different problem settings. 
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METHODOLOGY 

In this section, we formulates the full network design problem into a non-linear integer 
programming model or its variants and propose a customized solution approach for solving 
these network models. For the convenience of the readers, the mathematical notation is 
summarized in Table 1. 

Table 1 Notation List. 

 Demand rate at the terminal  

 Unit expedited shipment cost from supplier i to terminal  

 Fixed cost to install supplier  

 Unit inventory holding cost at facility  

 Supplier disruption probability for the regular service 

 Unit regular shipment cost from supplier  to terminal  

 Expected regular shipment lead time from supplier  to terminal  

 Maximum assignment level 

 Stock-out probability at terminal  with base stock  and regular 
supplier  

 Base-stock position at terminal  

 Maximum allowable base-stock position at terminal  

 Whether supplier  is installed for service 

 Whether supplier  provides regular service to terminal  at 
assignment level l  

 Whether supplier  provides expedited service to terminal  

 Set of candidate suppliers, indexed by  

 Set of terminal facilities, indexed by  

 Set of assignment levels, indexed by   

 Set of candidate base-stock positions 
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Network Model Formulation 

Figure 1 illustrates the studied supply chain system, which includes set of terminal 
facilities denoted by  and a set of candidate suppliers denoted by . Each terminal  
receives discrete demand for a certain commodity from a fixed pool of customers over time. 
We assume that at each terminal , demand units arrive randomly with an expected rate of . 

To feed the arriving demand, we assume that each terminal  initially keeps a base-stock 
position  where  is a given capacity of the inventory at , and the cost 
of holding one unit base stock per unit time is . This yields the system inventory cost as 
follows 

 H : j j
j

C h S
J

  (1) 

Whenever receiving a demand unit, terminal  will first check its on-hand inventory 
and take one unit from this inventory, if any, to feed this demand unit. Meanwhile in order to 
maintain the base-stock inventory position, terminal  can place an order right away from a 
supplier from . This study considers possible supplier disruptions and assumes that each 
supplier can be disrupted independently any time at an identical probability . To mitigate the 
impact from uncertain disruptions, a terminal is assigned to  suppliers at different priority 
levels for regular shipments. Every time, this terminal scans through these assigned suppliers 

 
Figure 1 Illustration of the studied supply chain system. 
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from level 1 through level  and places the order to the first functioning supplier. For the 
notation convenience, we define level set . In this way, the probability for a 
terminal to be served by its level-  supplier is . The assignments are 
specified by binary variables  such that  if supplier  is assigned to 

terminal  at level  or  otherwise. Let  denote the cost to ship a unit commodity from 
supplier  to terminal , and then the total expected regular shipment cost is 

 R 1: (1 ) .l
j ij ijl

i j l
C d r q q Y

I J L

  (2) 

We assume that the studied supply chain system has to maintain very high service 
quality such that customer demand has to be served right after it arrives. Despite being an 
economic option, a regular shipment is usually slow and unreliable. We assume that a regular 
shipment from supplier  to terminal  takes a random lead time with an expected value of . 
Since a longer shipment time is usually associated with a higher shipment cost for the same 
mode of transportation, we assume that . In case that 
the regular shipments cannot arrive in time to meet the outstanding demand, the on-hand 
inventory at terminal  may be depleted, particularly when the realized demand rate is high. In 
this case, terminal  has to activate expedited transportation that always delivers shipments in 
a negligible lead time. We assume that every supplier provides an emergent expedited service 
that is independent from the regular service and never disrupts. When the on-hand inventory 
is depleted, a terminal uses the expedited service from a selected supplier, which however costs 
much more than regular transportation. Let  denote the cost to obtain an expedited shipment 
from supplier  to terminal , which shall satisfy . In order to quantify the 
expected expedited transportation cost, we will first quantify the probability for a terminal to 
activate the expedited service. Conditioning on that supplier  is the active regular service 
provider to terminal , the probability for terminal  to use the expedited service can be 
represented as a function of initial inventory  based on a truncated Poisson distribution (Li, 
2013), 

 
0

/ !
( ) .

/ !

j

j

S

j ij j
ij j sS

j ijs

d t S
P S

d t s
 (3) 

 
Note that once terminal  places an expedited order from supplier ’, then no regular 

order is placed to the incumbent regular supplier , and thus the actual additional cost due to 
this expedited order is . Define variables  to denote the expedited service 

assignments such that  if terminal ’s expedited service provider is supplier  or 
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 otherwise. Then the total expected additional cost due to expedited shipments (or the 
marginal expedited cost) can be formulated as 

 M 1: 1 .l
j i j ij ij j i j ijl

j i l i
C d e r q q P S Z Y

J I L I

  (4) 

Another risk that the regular service is subject to is that all its suppliers may be 
disrupted simultaneously at probability Lq . If this happens, the regular service to this terminal 
becomes inactive, and we assume that it is now only served by emergency shipments from the 
previously assigned expedited supplier. The emergency cost structure stays the same as the 
previously defined expedited cost structure since they come from the same sources. Thus the 
expected system emergency cost is formulated as  

 E : .L
j ij ij

j i

C d e q Z
J I

  (5) 

Finally, in this supply chain system, if candidate supplier  is used by one or more 
terminals for either regular or expedited service, a fixed installation cost  (prorated per unit 
time) is incurred. Define binary variables   to denote the supplier location decisions such 
that  if candidate supplier  is installed or  otherwise. This results in the system 
fixed installation cost as follows, 

 F : .i i
i

C f X
I

  (6) 

The system design includes integrated decisions of supplier location , regular 
service assignments , expedited service assignments , and initial inventory positions 

 that collectively minimize the total system cost composed of (1), (2), (4), (5) and (6). Note 
that these cost components shall generally exhibit the following tradeoffs. Increasing supplier 
installations shall raise one-time fixed cost (6) but reduce day-to-day operational costs(2), (4) 
and (5). The higher inventory positions  we set, which though increase inventory cost (1), 
the less frequent expedited shipments are needed according to probability function (3), and 
thus the less extra expedited transportation cost (4) is consumed. In order to quantitatively 
solve the detailed system design, the follow integer programming model is formulated. 

 
1

min :

+ 1 ,

i i j j
i j

l L
j ij i j ij i j ij j ijl ij ij

j i l i i

C f X h S

d r e r Z P S q q Y q e Z

I J

J I L I I

  (7) 

 s.t. 0, ,ijl i
l

Y X i j
L

I J , (8)  
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 0, ,ij iZ X i jI J , (9) 

 1, ,ijl
i

Y j l
I

J L , (10) 

 1,ij
i

Z j
I

J , (11) 

 ,j jS jS J , (12) 

 0,1 , , ,ijlY i j lI J L , (13) 

 0,1 , ,ijZ i jI J , (14) 

 0,1 ,iX i I . (15) 
Objective  aims to minimize the summation of all cost components (2), (4), (5) and (6) 

across the entire system. Constraints (8) and (9) indicate that a supplier need to be installed 
first prior to its usage. Constraint (8) also ensures that if one of the suppliers is selected to 
provide the regular service to a terminal, it can only serve this terminal at one assignment level. 
Constraint (10) requires that one terminal has one and only one regular supplier at each level. 
Constraint (11) postulates that each terminal is assigned to one and only one expedited supplier. 
Constraints (12) - (15) are the corresponding integer and variable constraints for all variables. 

Solution Algorithm 

This section develops a customized solution approach that can efficiently obtain a near-
optimum solution to the problem (7) – (15), which is an NP-hard problem and extremely 
difficult to solve. We propose a Lagrangian relaxation algorithm that decomposes this problem 
into a number of relatively easy sub-problems that can be solved to obtain a lower bound to 
the original optimal objective (7). Also, the relaxed solution is utilized to construct a feasible 
solution that yields an upper bound to the objective. Finally, a sub-gradient search approach 
that iteratively updates both relaxed and feasible solutions to reduce the optimality gap between 
the upper bound (the best feasible solution) and the lower bound (the best relaxed solution) of 
the true optimum to an acceptable tolerance (or zero in ideal cases) is presented in this section.  

Lagrangian Relaxation 
The Lagrangian relaxation algorithm basically relaxes constraints (8) and (9), and add 

them to objective (8a) with a set of Lagrangian multipliers JI jiij ,0}{:=  and 

JI jiij ,0}{:= . We further add the following constraints 

 1, , ,ijl
l

Y i j
L

I J   (16) 

which are redundant to constraints (8) and are only used to improve the relaxed problem 
solution. Therefore, the relaxed problem can be formulated as follows: 
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' '
'

: min

,

i ij ij i
i j

ii jl i j ijl ijl j j
j i l i

f X

Z Y h S

X,Y,Z,S I J

J I L I

λ,μ
  (17) 

subject to constraints (9)-(16), where  

 '1
' ' 1

L
i j i jl

ii jl j i j ij ij j

e q
d e r P S q q

L L
, (18) 

and,  

 11 l
ijl j ij ijd r q q . (19) 

In the above relaxed problem, the variables  are separated from the other variables. This 
allows us to decompose the relaxed problem into two sets of sub-problems. The first set only 
includes one sub-problem involving variables : 

 = min ,i ij ij i
i j

f X
X I J

λ,μ   (20) 

subject to binary constraint (15). Sub-problem (20) could be simply solved by setting  
if  or  otherwise, which only takes a time complexity of 

. The second set contains  sub-problems, each associated with a terminal , as 
follows: 

 
,

' '
', ,

: ,min
ijl ij ji l

j ii jl i j ijl ijl j j
i l iY Z S

Z Y h S j
I L

I L I
λ,μ J ,  (21) 

subject to (10)-(14), (16) (where  and  were formulated in (18) and (19). We 
reformulate sub-problem (21) as a combinatorial problem to facilitate the solution algorithm. 
Define set , where each  specifies a 
strategy to assign the regular suppliers to terminal  at all  levels sequentially; i.e., supplier  
is assigned to terminal  at level . For short we denote vector  with alias 

. Then sub-problems (21) can be rewritten as: 

 ' '
, ,

: : ,min
j j

j ki j j ki j j j j ki j
i k S

C S A S h S B j
I K S

λ,μ J , (22) 

where  

 11
l l

l
ki j j i j i j i j j

l
A d e r q q P S

L

,  
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1= 1
L

j i j i jl
ki j j ij ij

l

d e q
B d r q q

LL
.    (23)  

For given  and ,  can be solved with a bisection search method 

(BS) described in Appendix A. With this, problem (17) can be solved by a customized 
enumeration algorithm (EA) the does an exhaustive search through  for every 
, as follows: 

Step EA1: For each terminal , we iterate through  that specifies terminal 
’s assignment strategy of both regular and expedited suppliers, and call the BS algorithm to 

solve . 

Step EA2: Find ; 

Step EA3: Return the optimal assignment strategy  and inventory position ; 

Step EA4: Repeat EA1-3 for every supplier  to get the optimal solution to  and  as 
follows: 

*1 if ;
0 otherwise,

l
ijl

i i
Y  

1 if ' ;
0 otherwise,ij

i i
Z  ,

max , , , , .i ijl ijj l
X Y Z j i l

J L
J I L  (22) 

Note that in the worst case, the time complexity of the EA algorithm for solving sub-problems 
(21) is . By solving sub-problems (20) and (21), the object value of relaxed 
problem (17) for one set of given  and  is equal to: 

 = + j
j J

λ,μ λ,μ λ,μ , (23) 

which is a lower bound for the optimal value of problem (7)-(15) based on the duality property 
of Lagrangian relaxation (Geoffrion, 1974). Note the time complexity of sub-problem (20) is 
of a lower order. Therefore, sub-problem (21) dominates the total time complexity of the 
relaxed problem (23). 

Feasible Solution 
If the solution obtained by solving relaxed sub-problems is found to be feasible to the 

primal problem (7)-(15) and yield an identical objective value, then it will be also the optimal 
solutionto the primal problem. Otherwise, which is the most likely case, we will use certain 
heuristics to construct a feasible solution. One intuitive way is to keep  values and adjust 
the  values as:  

 
,

max , ,i ijl ijj l
X Y Z i

J L
I ,  (24) 
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which could be solved very efficiently, i.e., in a time on the order of . 
However, as  values in the relaxed solution are usually much scattered, this feasible 
solution likely yields an excessive number of suppliers, leading to an unnecessarily high total 
cost. A better feasible solution is to fix  and adjust the other variables accordingly. Define 

 to be the set of installed suppliers in the relaxed solution. Then, by 
setting  and replacing  with  in sub-problems(21), other feasible variable values 
can be determined by solving sub-problems (24)-(29): 

 
,

' '
, , '

: ,min
ijl ij ji l

j ii jl i j ijl ijl j j
Y Z i l i

Z Y h S j
I L

S I L I

λ,μ J , (24) 

 Subject to 1, , ,ijl
l

Y i j
L

I J   (25) 

 =1, , ,ijl
i

Y j l
I

J L   (26) 

 =1, ,ij
i

Z j
I

J   (27) 

where 

 1
' ' 1

L
i jl

ii jl j i j ij ij j

e q
d e r P S q q

L
, (28) 

 11 l
ijl j ijd r q q . (29) 

Then similar to the transformation from (21) to (22), we also define set 
 as all the strategies to assign regular suppliers from  to 

terminal  at all  levels, and we also use alias  to represent vector  for short. 
Then the transformed sub-problems are formulated as 

 
, ,

: : ,min
j j

j ki j j kj ki j j j
i k S

C S A B h S j
I K S

λ,μ J  (30) 

where  
 11 1

l l

l
kj j i j i j j

l

A d r q q P S
L

, (31) 

 1= 1
l

L
j l

ki j i j j i j j
l

d q
B e d q q P S

L L

. (32) 

The exact optimal solution to each sub-problem (24)-(27) with any  can be solved 

as follows. First denote . Then we denote with vector 

 the first  regular service suppliers sorted by the shipment cost to terminal 

, i.e., . Finally, define , which 

can be again efficiently solved with the BS algorithm in Appendix A. The following 
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proposition proves that  is the optimal solution to sub-problem (24)-(27) with 

respect to terminal .  

Proposition1. . 

Proof. First, it can be seen from the structure of sub-problem (24)-(27) that as  varies 

while the other variables are fixed,  increases with . Therefore the optimal solution 

to  is . 

Let  denote the optimal value of , then the optimal solution to  is 
. We will prove  by contradiction. If there exists 

 such that . We construct a new feasible solution  

by swapping the levels of  and  in , and then we compare the difference between the 
two costs with respect to  and , respectively,  

 

 

 

Note that , and  due to the assumption that 

. Then we obtain , 

which is contradictive to the premise that  is the optimal solution. Therefore, we prove 

. If there exists a  and some  having , replacing  with  in 

 will further reduce cost  with a similar argument, which is a contradiction, too. 

This proves that . Finally,  obviously holds since . This completes the 
proof. □ 

By solving problem (24)-(27) for all , a feasible solution to the primal problem 
can be obtained as follows: 

'**
*1 if  ;1 if ;
, , , .

0 otherwise, 0 otherwise,

j
jl

ijl i j jj

ii
Y Z S j i

ii
S lJ I L  (33) 

ki j jC S
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This algorithm is fast (only taking a solution time of O max ln , ln jL SJ I I ). 

Plugging these feasible solution values into primal objective function (7), we obtain an upper 
bound to the optimal objective value as well  

Updating Lagrangian Multipliers 
If the upper bound objective based on (19) is equal to the lower bound (11), then we 

know this bound is the optimal objective value, and the corresponding feasible solution is an 
optimal solution. Otherwise, we will iteratively update the multipliers  and  based on the 
difference between the current relaxed and feasible solutions so as to obtain better solutions 
and find the tightest lower bound. A subgradient algorithm is used to complete this iterative 
procedure as described in Appendix B. 
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DISCUSSION OF RESULTS 

In this section, a series of numerical examples are presented to test the proposed model 
and provide useful managerial insights based on the datasets provided in Daskin (1995), i.e., a 
49-site network involving 48 continental state capital cities and Washington D.C. The 
numerical algorithms are coded with MATLAB and implemented on a PC with 3.40 GHz CPU 
and 8 GB RAM. The LR parameters are set as , and 

. We assume that each site has both a candidate supplier and a terminal facility, and the 
parameters are generated as follows. We set , , and , 
where  and  are constant coefficients and  is the great-circle distance between sites  
and . Each  is set to be an independent realization of a uniformly distributed random 
variable in interval , where  is a constant scalar. In addition, 
we assume that each  is the product of the corresponding city population and a scalar , and 

each  is the product of the corresponding state population and a scalar dc . We set  for 

all the cases. 

Firstly we test model (7)-(15). Table 2 summarizes the results of 4 instances on the 49-
site network by varying failure probability , where we set 

 The optimal gap between the final feasible objective value 
and the best relaxed objective is denoted by , the solution time is denoted by . The optimal 
system total inventory and the optimal number of selected suppliers are denoted by  and , 
respectively. Moreover, define  

 

1 *

E

1
:

l
j ij j ijl

i j l

j
j

d q q P S Y
P

d
I J L

J

 

as the percentage of demand served by the expedited shipments, where  is the best 
solution to . Inventory cost, regular shipment cost, marginal expedited shipment, emergency 
cost, supplier set-up cost,  and total system cost are denoted by , , , , , and , 
respectively, as defined in equations (1), (2), (4)-(7).  

Table 2 Numerical results for the 49-site network (
fc =0.02, 

dc  =10-5, 
lc  =10-4). 

#  
1 0.1 3154 0.18 12 21198 165 16500 7323.2 4862.3 3.73 49883.5 
2 0.3 3367 0.22 16 34858 204 20400 7932.3 13357 14.9 76547.3 
3 0.5 3571 0.41 21 42724 193 19300 8419.9 19478 20.6 89921.9 
4 0.7 3653 0.47 24 53379 195 19500 3192.1 27354 26.1 94833.2 
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We note in Table 2 that all the instances are solved with <1% in one hour. This 
indicates that our approach can solve problem instances of a realistic size to a near-optimum 
solution with a reasonable solution efficiency. When  increases,  and  
significantly increase, while  seem to increase first and then drop. This indicates 
that as  rises, all the cost components will increase at first, leading to a sharp growth of the 
total cost. Nevertheless, when  keeps increasing, regular service is unreliable and keeping a 
higher inventory is no longer an appealing solution. Instead, a higher percentage of expedited 
shipments are needed to keep the service quality. Meanwhile more suppliers are installed to 
shorten the shipping distance and offset the increasing expedited shipment cost. 
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(g) 

 
(h) 

Figure 2 Sensitivity analysis on parameters  ((a) and (b)),  ((c) and (d)),  ((e) and (f) ) and  
((g) and (h)). 

Figure 2 shows four sets of more detailed sensitivity results, where we can see all the 
cost components, the inventory position S and the expedited service percentage change over 
key parameters . The default parameters are set as

, and only one parameter value varies in 
each experiment. In Figure 2 (a), as  grows from 0 to 1,  and  generally increase, while 

 increases slightly first and then drops, and  is originally stationary and then drops. Also, 
the total cost  has a sharp increase from around 30000 to 80000, then followed by a constant 
and slower increasing rate as  becomes lager. Figure 2 (b) shows that  rapidly increases 
with the growth of , while  rises at first and then drops slowly. It’s probably because when 

 increases, the regular service from upstream suppliers become increasingly unreliable, and 
thus the probability of accessing backup suppliers and expedited services grows. Then more 
suppliers are selected and higher inventory positions are needed to offset the growth of the 
shipment costs. Furthermore, as  keeps rising, selecting more suppliers gradually becomes 
the only cure and higher inventory positions are not as helpful. Meanwhile, expedited 
shipments gradually take over regular shipments and become the dominating shipment mode. 
In Figure 2 (c), when  grows from 1 to 1000,  generally increase,  
continually drop to almost zero, and  increases strictly first followed by a slower growth. 
Figure 2 (d) shows that the increase of  rapidly brings down  to a slowing down trend in the 
tail, while  generally increase. This implies that installing more suppliers does not help much 
when  is large, while using more expedited shipments seems more effective in offseting the 
inventory cost growth. We can see in Figure 2 (e) and (f) that both  and  increase with the 
growth of  from 0.005 to 0.2, while  and  keep decreasing to almost zero.  and  
grow slowly at first and then drop, which seems to be consistent with the variation of  in 
Figure 2(f). This is probably because as  grows, the regular shipment cost increases, and thus 
a higher inventory is needed to offset the growth of expedited shipment cost. The higher 
inventory leads to a continuous drop of the expedited shipments and a slight increase of the 
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regular shipment cost initially. Nevertheless, as  continues to grow (the shipment cost 
correspondingly increases), building more facilities becomes a better solution to offset the 
shipment cost growth, which finally brings down the total inventory. In Figure 2(g) and (h), as 

 increases,  increases significantly and  drops sharply, but the total cost and all its 
components do not change too much. This indicates that expedited shipments actually cause 
little increase in overall cost under the optimal inventory management and transportation 
configuration strategy, and thus it is an appealing strategy to combine both regular and 
expedited shipments to reduce the system cost and increase the system reliability. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3 Sensitivity analysis on parameters  ((a) and (b)),  ((c) and (d)), and  ((e) and 
(f)). 

Besides, we also tested how the results vary with the magnitudes of supplier installation 
cost (in terms of ), customer demand rates (in terms of ) and lead times (in terms of ), as 
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shown in Figure 3. It can be seen in Figure 3 (a) and (b) that, when  initially grows, all cost 
components and the total cost generally increase.  As  keeps increasing,  increases first 
and then turns down and  flattens out. This is probably because that, the growth of supplier 
installation cost likely decreases the number of suppliers, which consequentially raises the 
shipment distance, cost and leading time. Nevertheless, when  continues to increase, the 
number of suppliers is so small that increasing the inventory position alone is not enough to 
keep the service quality and thus using more expedited services seems necessary. Figure 3 (c) 
shows that the increase of initially raises all cost components except . Then  keeps 
increasing but  and  decrease slightly with a slowing down trend in the tails. We also see 
in Figure 3 (d) that  increases quickly initially and then flattens out, while  significantly 
decreases to almost zero. It is probably because that expedited services are more suitable for 
the cases with low demands when the suppliers are scattered and high inventory positions are 
unnecessary. Nevertheless, as demands increase, regular shipments will become the main 
shipment mode instead. Figure 3 (e) and Figure 3 (f) show that as  grows, ,  and  
increase while  drop, and  and  increases at the beginning then drops. This shows that 
growth of regular shipment delay will cause the decreasing of inventory positions and 
consequently increasing the expedited service seems to become a better solution to improve 
the service quality. 

We also test how the variations of  affect the optimal suppliers’ layouts and terminal 
facilities’ assignments. Again we set 

 and each sub-figure in Figure 4 shows the optimal layout for a different 
 value among 0, 0.3 and 0.6. In each sub-figure, the squares denote the selected supplier 

locations and the circles represent the terminal facilities with their area sizes proportional to 
the base-stock positions. The arrows show how the selected suppliers are assigned to each 
facility with each arrow’s width proportional to the percentage of the corresponding expedited 
shipments and different colors denoting different levels, i.e., yellow for the first level, green 
for the second level and pink for the third level.  

In Figure 4 (a), when the facility disruption risks are ignored ( ), the problem 
would be similar to the integrated model proposed by Li (2013), in which all suppliers are 
assumed to be reliable and is considered as the benchmark case in our problem. By comparing 
Figure 4 (a) and (b), we note that as failure probability  increases from 0 to 0.3, 5 more 
supplier installations are selected and more frequent expedited shipments are needed, in 
particular for the facilities that are far away from their suppliers. This implies that when 
primary supplier becomes unreliable and backup facilities are needed, a proper solution is 
selecting more suppliers to reduce the overall shipment cost. Generally, the expedition 
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percentage increases with the assignment level, and facilities served by farther suppliers hold 
higher inventory positions. 

As  further rises to 0.6, we can see that many more suppliers are installed and the 
inventory positions of facilities increase generally, but the expedition percentage generally 
drops. This is probably because that more unreliable suppliers lead to a higher probability of 
activating services from higher-level suppliers and all the supplier’s simultaneous disruption, 
such that more suppliers are needed to be installed to maintain essential supplying service. 
Interestingly, we can see that 7 more suppliers are installed and most of them (5 suppliers) are 
located in the northeastern areas with higher population and more facilities. Therefore, under 
the optimal planning, facilities with more demand may be met first to reduce the shipment 
costs as much as possible. 

 
(a) q=0% 

 
(b) q=30% 
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(c) q=60% 

 
Figure 4 Optimal network layouts for different q. 
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CONCLUSIONS 

This paper proposes a reliable logistics network design framework that integrates one-
time location selection decisions and long-term operational strategies of shipment expedition 
and inventory management in an uncertain environment. We formulated a nonlinear mixed 
integer model to investigate this problem. The major contributions of the paper to the literature 
are that (i) the expedited transportation decisions have been integrated into the logistics 
network design framework, (ii) the possibility of supplier failures are considered in the design 
of integrated logistics system and (iii) a customized solution approach has been developed to 
efficiently solve this integrated logistics system design problem. Since the proposed model is 
difficult to solve (nonlinear integer programming problem), a customized solution approach is 
created based on Lagrangian relaxation. This solution approach is able to solve this model 
efficiently and accurately, as evidenced in a set of numerical experiments. These experiments 
also revealed a number of managerial insights on how the parameter values affect the optimal 
design results. For example, we found that the optimal network layout and the related cost 
components can vary significantly with different failure probabilities. We also found that when 
the upstream suppliers become unreliable, expedited shipments will be used more frequently 
in relation to regular shipments. The increased expedited shipments can ensure the reliability 
of the integrated logistics system without an excessive increase of the operating costs. The 
optimal network layout also shows that when the supplier failure probability increases, areas 
with more customer demands tend to have a high priority to receive services, despite the higher 
transportation costs. For this project, we created a user friendly web-based interface for biofuel 
logistics network design available at http://biofuel.msstate.edu/.  
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RECOMMENDATIONS 

This study established an open-ended design framework that can be extended in several 
directions. First, it will be interesting to examine the effect of more general demand and lead 
time distributions other than an independent Poisson distribution. Second, this study assumes 
that the expedited shipment is “non-fallible”, which may be not realistic for some applications 
where the suppliers may suffer serious disasters causing both services failed. Third, it might 
be worth considering positive lead times even for expedited shipments for some applications 
where the expedited delivery time is still noticeable. Finally, this study is set as a two-echelon 
system where the locations and demand of all the terminal facility are considered to be in the 
basic conditions and independent of the network design results. However, in some other 
applications, a more general structure is needed for terminal facilities distribution planning. 
Extending the current two-echelon network to a more general structure will be an interesting 
research topic. 
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APPENDIX 

A Bisecting algorithm to solve (22) 

Step BS0: For a given set of , initialize two search bounds of as : 0LS  

and : jUS S , and the difference slope of 'ki j jC S  defined in equation (22) with respect to 

LS  as: 
1: 1 0 1

l l l

l
L j j i j i j i j i j

l
G h d e r q q P P

L

 , and that with respect to US  as: 
1: 1 1

l l l

l
U j j i j i j i jj

l
ji jG h d e r q P S Sq P

L
. 

Step BS1: If , 0L UG G , set optimal : LS S . Or if , 0L UG G , set optimal : US S . Or if 

1U LS S , set : LS S  if ' 'ki j L ki j UC S C S  or : US S  otherwise. If S  is found, go to 
Step BS3. 
Step BS2: Set the middle point : / 2M L US S S . Calculate the slope at MS as: 

1: 1 0 1
l l l

l
M j j i j i j i j i j

l
G h d e r q q P P

L
 if 0MS  or

 
1: 1 1

l l l

l
M j j i j i j i j M i j M

l
G h d e r q q P S P S

L
 otherwise. If 0MS , set 

U MS S  and U MG G ; otherwise, set L MS S  and L MG G . Go to Step BS1. 

Step BS3: Return 
*
jS  and * ki j jC S  as the optimal solution and the optimal objective value to 

problem (22), respectively. 

B Subgradient algorithm to update Lagrangian multipliers 

Step SG0: Set initial multipliers 0 0 0, ,ij ij i jI J . Set an auxiliary scalar 0 2and an 
iteration index : 0k .Set the best known upper bound objective :C . 
Step SG1: Solve relaxed problem k kλ ,μ with the solution approach proposed in Section 

4.1, and ,k k k k
i ij ij jX Y Z S  denote its optimal solution. If the objective value of k kλ ,μ  does 

not improve in K
 
consecutive iterations (whereK  is a predefined number, e.g., 5), we update

= / , where h is a contraction ratio greater than it. 
Step SG2: Adapt ,k k k k

i ij ij jX Y Z S to a set of feasible solution with the algorithm described 
in Section 4.2.Set C  equal to this feasible objective if C  is greater than it. 
Step SG3: Calculate the step size as follows1 

                                                 
1 In the denominator of this formula, we use the absolute value instead of the squared Euclidean norm, because we found it 
helps improve the solution efficiency. 
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,

( )
:

+

k k

k

k k k k
ijl i ij i

i j l

C
t

Y X Z X
I J L

λ ,μ
. 

Then update multipliers as follows 

1k k k k
ij ij k ijl i

l
t Y X

L

, 1k k k k
ij ij k ij it Z X , ,i jI J . 

 
Step SG4: Terminate this algorithm if (i) optimality gap k kC

C
λ ,μ  where is a pre-

specified error tolerance, (ii) is smaller than a minimum value , or (iii) k exceeds a 
maximum iteration number K ; return the best feasible solution as the near-optimum solution. 
Otherwise 1k k , and go to Step SG1. 


